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Relative velocity fluctuations in turbulence

S. K. P. Bhat, S. Rai, A. K. Razdan,* and S. Chopra
Physics Department, Indian Institute of Technology, New Delhi—110016, India
(Received 2 May 1994)

Photon correlation spectroscopy has been used to investigate grid generated turbulence. A measure-
ment of the probability distribution function for the relative velocity fluctuations provides evidence to
our theoretical model that this probability distribution follows a product of a Gaussian- and a

Lorentzian-type function.

PACS number(s): 47.27.—i

Light scattered from a seeded fluid flowing through a
grid has been investigated both theoretically and experi-
mentally at intermediate Reynolds numbers [1-3]. This
scattered light is detected by a photomultiplier tube
(PMT) and then sent to a digital correlator to measure
the autocorrelation function (ACF) [4,5]. This PMT
records the beating of Doppler shifted light from pairs of
correlated particles and is modulated at a frequency
difference proportional to the velocity difference between
the pairs of particles separated by a distance R.

In a turbulent flow, eddies are formed which exist over
certain length scales, from the largest allowed by experi-
mental constraints (e.g., mesh size of the grid generating
the turbulence) to the smallest eddy determined by
viscous dissipation. Further, in these eddies the individu-
al particles can have a range of velocities which are nei-
ther constant nor independent of each other, but are
correlated due to the nature of the turbulent flow, the
correlation depending upon the distance R between the
particles.

If we take v, and v, as the velocities of a pair of parti-
cles separated by a distance R in the fluid, then
V(R)=v,—v, will be the velocity difference between
these two particles at the same instant of time. Since
large number of particles are under observation at the
same time in the observation volume these individual ve-
locities v; and v, can be taken to be Gaussian by virtue of
the central limit theorem [6]. Now in a fluid flow v, and
v, are not generally independent of each other but have
some correlation. In a laminar flow v, —v, =V, and is in-
dependent of R. But in a turbulent flow, if we take v,
and v, to be correlated Gaussian, then, as is well known
in the theorem relating to Gaussian random variables
that the sum or difference of Gaussian random variables
is also a Gaussian random variable. So if
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and U, are the means [6]. Thus
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p is the correlation coefficient of joint Gaussian random
variables v, and v,. In general the correlation coefficient
p is not fixed and may take a range of values. To take
this variation into account, we define a distribution of the
p which, when incorporated into P(¥V (R)) with the prop-
er weight factor, will give us the correct distribution
function. Now it is known [6] that for isotropic scatter-
ing process (e.g., rotating ground glass, turbulent flow,
etc.), the probability density of the cross section when
recorded on a plane is a Cauchy or Lorentzian distribu-
tion function. This suggests a Lorentzian distribution for
p itself of the type

where N is the normalization constant and «a is the half-
width.

Therefore the final probability distribution of the ve-
locity difference of two Lorentzian correlated velocities is
P,(V(R)),

P,(V(R))=P(V(R))p(p) . (3)

Such a probability distribution has also been predicted
by Goldburg and co-workers [1-3] from their measure-
ments of the intensity correlation function of the scat-
tered light from a seeded flow flowing through a grid at
an intermediate turbulence range.

To verify this experimentally, we have done experi-
ments similar to ones described in [1-3] in the medium
range of turbulence having Reynolds numbers in the
range of 300—800. Here we define the Reynolds number
in the usual way as au /v, where a is the mesh size of the
grid, v is the kinematic viscosity, and u is the mean flow
velocity at the center line of the pipe. The outline of the
experimental setup is shown in Fig. 1.
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Distilled water is circulated through a glass cell of di-
ameter 3.5 cm by means of a closed pump system. A grid
of mesh size 3 mm made of steel wire rods of diameter 1.7
mm placed inside the cell near the high pressure end gen-
erates the desired turbulence. Laser light from a 10 mW
Spectra Physics He-Ne laser is scattered from the tur-
bulent fluid and focused onto a variable slit with unit
magnification before reaching a photomultiplier tube
(RCA model 31034A). The output of the PMT after suit-
able digitization is fed to a 64-channel Malvern Digital
photon correlator (7032CN) which is preprogrammed to
carry out the autocorrelation analyses. The ACF is sensi-
tive to the size of the eddies controlled by the variable slit
width. As the velocity difference V' (R) is a random vari-
able, the ACF of the scattered light at the PMT will be
the average of the phase factor exp[ik-V(R)r], where
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FIG. 2. Probability distribution function for the relative ve-
locity fluctuations extracted from Eq. (7) at Reynolds number
~300 using experimentally measured values of autocorrelation
function (ACF). The points on the curve B indicate experimen-
tal points, while + indicates Lorentzian, * indicates Gaussian,
and O indicates the product of Lorentzian and Gaussian points.
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FIG. 1. Outline of the experi-
mental setup. G: grid; I: inlet;
O: outlet; BT: bubble trap; L:
lens; VS: variable slit; PMT:
photomultiplier tube; COR: di-
gital  correlator; AMP-DIS:
amplifier-discriminator; COMP:
computer.

k=(4mn /A)sin(6/2). If P(V(R)) is the normalized ve-
locity distribution, then the ACF is [5,7]

g(r)=NA?[e*VRp (V(R)V . ()

For the case of isotropic geometry, since P(V(R)) is in-
dependent of direction, we have

PP(V(R))=417V2PP(V(R)) . (5)

Substituting Eq. (5) in Eq. (4) and integrating over the an-
gles, we get [7]

gtn= [ SUIERL p (vRNavR). ®)

The Fourier sine transform of the above equation yields
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FIG. 3. Probability distribution function for the relative ve-
locity fluctuations extracted from Eq. (7) at Reynolds number
~ 500 using experimentally measured values of autocorrelation
function (ACF). The points on the curve B indicate experimen-
tal points, while + indicates Lorentzian, * indicates Gaussian,
and O indicates the product of Lorentzian and Gaussian points.
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The final distribution of the velocity difference taking
into account the slit width becomes

g(n=["h(R)dR

© sin[kV(R)]7]
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where h(R) is the number fraction of particle pairs
separated by distance R in the scattering volume [1] and
L is the slit width (~0.5 mm for our experiments).

Our results for Pp( V(R)), which have been extracted
on a computer using the measured values of ACF in Eq.
(7), are displayed in Figs. 2 and 3. The two curves in
Figs. 2 and 3 refer to Reynolds numbers of 300 and 500,
respectively. We see that for a low Reynolds number, the
Lorentzian fit is closest to the experimentally observed
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curve, and for the medium Reynolds number of 500 it is
the product of a Lorentzian and a Gaussian that corre-
sponds to the observed probability distribution function
of the relative velocities. The value obtained from our
experiments for the ratio of widths of the Gaussian (o) to
Lorentzian (a) are in the range of 2.4-2.8 for the inter-
mediate turbulence range, agreeing with the approximate
value of 3 obtained by Pak, Goldburg and Sirivat [2].
Typical values of o and a obtained from our experiments
at the Reynolds number of 500 are o =1.67 X 10™* m/sec
and a =0.64X10"* m/sec, giving the ratio o /a=2.6.
For still higher values of Reynolds number, = 1000, it is
the Gaussian which follows the experimental curve. This
can be explained perhaps due to the fact that for high
values of Reynolds number, the correlation distribution
itself tends to a Gaussian rather than a Lorentzian, mak-
ing the overall P,(V(R)) the product of two Gaussians in
Eq. (3) and therefore itself a Gaussian.
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